
PRAXA: A Framework for What-If Analysis

SNEHA GATHANI, University of Maryland, College Park, USA

KEVIN LI, University of Maryland, College Park, USA

RAGHAV THIND, University of Maryland, College Park, USA

SIRUI ZENG, University of Maryland, College Park, USA

MATTHEW XU, University of Maryland, College Park, USA

PETER J. HAAS, University of Massachusetts, Amherst, USA

ÇAĞATAY DEMIRALP, AWS AI Labs, USA and MIT CSAIL, USA

ZHICHENG LIU, University of Maryland, College Park, USA

Various analytical techniques–such as scenario modeling, sensitivity analysis, perturbation-based analysis, counterfactual analysis, and

parameter space analysis–are used across domains to explore hypothetical scenarios, examine input–output relationships, and identify

pathways to desired results. Although termed differently, these methods share common concepts and methods, suggesting unification

under what-if analysis. Yet a unified framework to define motivations, core components, and its distinct types is lacking. To address this

gap, we reviewed 141 publications from leading visual analytics and HCI venues (2014–2024). Our analysis (1) outlines the motivations

for what-if analysis, (2) introduces PRAXA, a structured framework that identifies its fundamental components and characterizes its

distinct types, and (3) highlights challenges associated with the application and implementation. Together, our findings establish a

standardized vocabulary and structural understanding, enabling more consistent use across domains and communicate with greater

conceptual clarity. Finally, we identify open research problems and future directions to advance what-if analysis.

CCS Concepts: • Human-centered computing → Visualization theory, concepts and paradigms; Empirical studies in visualization;

Interactive systems and tools; HCI theory, concepts and models; • Computing methodologies → Machine learning.

Additional Key Words and Phrases: What-if Analysis, Scenario Modeling, Sensitivity Analysis, Inverse Modeling, Counterfactual

Analysis, Parameter Space Analysis, Literature Review Analysis

ACM Reference Format:
Sneha Gathani, Kevin Li, Raghav Thind, Sirui Zeng, Matthew Xu, Peter J. Haas, Çağatay Demiralp, and Zhicheng Liu. 2018. PRAXA: A
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1 Introduction

Across diverse domains—including business, economics, healthcare, and urban planning—various analytical methods

are employed to explore data relationships, interpret model behavior, identify alternative strategies for achieving desired

outcomes, and support decision-making. These methods are described using different terminologies, such as scenario

modeling [20, 53, 61], sensitivity analysis [51, 54], perturbation-based analysis [55], what-if analysis [30, 32, 52, 74, 76],

inverse modeling [63, 65, 70], counterfactual analysis [45, 102], and parameter space analysis [12, 88]. For example,

scenario modeling involves simulating selected potential conditions of factors to evaluate different outcomes [61, 99].

Sensitivity analysis assesses the impact of variations in specific factors on outcomes [9, 25]. Perturbation-based analysis

deliberately introduces variations to factors and study system behavior [55]. What-if analysis identifies and optimizes

influential factors to achieve desired outcomes [30, 32]. Inverse modeling determines the input factors required to produce

specific outcomes [63], whereas counterfactual analysis identifies minimal changes in input factors necessary to change

the model predictions [78]. Parameter space analysis systematically examines input variations to observe their effects on

outputs [75].

Despite their diverse applications, these seemingly distinct analyses share common conceptual structures and objectives:

they all involve exploring hypothetical scenarios to observe potential outcomes or identifying data and model configura-

tions that achieve desired outcomes. For the rest of the paper, we adopt what-if analysis as an umbrella term for this family

of methods, aligning with the terminology commonly adopted in commercial business intelligence tools [16, 26, 83, 87].

The methodological overlaps among these different what-if analyses suggest the potential of developing an underlying

framework independent of specific domain applications and implementations. However, no work has systematically

examined how these analyses relate to one another within a cohesive structure. Specifically, we identify three critical

gaps in the current understanding and interpretation of these analyses. First, while different what-if analysis methods

address different objectives across domains, the motivations underlying their use have not been articulated clearly in

a domain-agnostic manner. Second, there has been insufficient analysis of the fundamental building blocks of what-if

analysis—what elements to modify (e.g., data attributes or model parameters) and how to execute the modifications (e.g.,

dataset scoping, variable perturbation and constraint application, or reweighting in models). This lack of clarity makes it

difficult to determine whether the different analyses share core components and to implement these analyses systematically.

Third, distinguishing between different types of what-if analysis is often challenging. For example, inverse modeling

and counterfactual analysis both trace outcomes back to their inputs, but differ in their implementation strategies, raising

questions about whether they constitute distinct methodologies or are merely variations of a common analysis method.

These ambiguities hinder systematic advancement in what-if analysis and complicate the development of generalizable

analytical tools.

We address these gaps by performing an extensive literature review and analysis of 141 research publications from 2014-

2024 across leading visual analytics and HCI venues including VIS, EuroVis, CHI, IUI, UIST, and TVCG. Specifically,

we introduce PRAXA, a framework for what-if analysis with the following contributions:

• We articulate the major motivations driving existing works to employ what-if analysis across different domains,

ranging from understanding and debugging model behavior to incorporating user preferences and constraints

(Section 3.1).

• We identify the building blocks (i.e., components) of what-if analysis along two fundamental dimensions: what key

dataset and model elements constitute what-if analysis (Section 3.2), and how the analyses are conducted in

terms of user_operations and system_operations (Section 3.3). Building on these components, we define and
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PRAXA : A Framework for What-If Analysis 3

characterize four distinct TYPES of what-if analysis, each with unique underlying assumptions and methodologies

represented by combining different components (Section 3.4).

• We highlight common challenges in implementing and using what-if analysis discussed in the literature, as well as

extend them to research gaps and opportunities to guide future research in what-if analysis (Section 7).

PRAXA establishes a standardized vocabulary for the components of different types of what-if analysis, providing a

conceptual framework that allows researchers and practitioners to implement what-if analysis consistently in domains.

PRAXA can serve as a practical guide for both researchers and practitioners. For instance, for researchers, PRAXA

highlights underexplored combinations of components (e.g, plugging predictions of input variable values from GOAL

SEEK back into SENSITIVITY to continue analysis), opening opportunities to develop new techniques and develop systems

that extend current what-if analyses. For practitioners in different domains (e.g., marketing budgets [30, 31], healthcare

interventions [5, 33, 46], urban policies [28], etc.), PRAXA provides explicit scaffolding of variables, constraints, and

objectives onto a pre-defined set of components. This provides the breakdown of complex analyses into concise and actionable

structure that is easier to communicate, audit, and reproduce, providing a foundation for building generalizable tools that

can be specialized through modular adaptation to different domains.

2 Methodology

To articulate the motivations for employing what-if analysis, define its building blocks and types, synthesize the challenges

in its implementation and use, and identify open research questions and future opportunities, we conducted a literature

review of research publications on what-if analysis and related concepts. Figure 1 provides an overview of our nine-month

process, including paper collection, analysis, and discussion of findings.

2.1 Paper Selection

We began by conducting a comprehensive keyword search for papers published between 2014 and 2024 in leading venues

for visual analytics and HCI, including InfoVis, VAST, SciVis (later unified as VIS), EuroVis, CHI, IUI, UIST, and TVCG.

The search keywords were designed to capture a broad range of terms related to what-if analysis, such as “scenario-based

analysis”, “sensitivity”, “counterfactual”, “perturbation”, “what-if”, “alternatives”, “inverse modeling”, “goal seek”, and

“parameter space”. We also included partial terms like “scenario”, “perturb”, and “parameter” in our query to ensure

Fig. 1. Methodology of the paper selection, codebook development, and coding and analysis followed for the literature review.
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4 Gathani et al.

comprehensive coverage of the relevant literature. We provide the complete list of keywords used in the supplementary

materials 1. This initially yielded 612 papers.

The first author (primary coder) reviewed the abstracts of all these papers to assess their relevance to what-if analysis.

Papers that were deemed irrelevant, such as the papers dealing with scientific visualizations, theoretical discussions, or

system optimization without user interaction were excluded. This process narrowed the selection down to 214 papers.

Next, the primary coder and the last author (PI) collaboratively defined the inclusion and exclusion criteria. We focused

specifically on papers dealing with intangible or abstract forms of data, thereby excluding works that centered on tangible

or physical datasets (i.e., those involving physical equipment or hardware [64, 94] were excluded). This filtering process

further narrowed the pool to 125 papers. Lastly, we employed a snowballing approach, identifying additional relevant

papers from the references of this pool of 125 papers. Applying the same criteria, we included 16 more papers, bringing

the total number of papers to review to 141. Of these papers, 7 were survey papers and excluded from the analysis. We

conducted a deep analysis of the rest of the 134 papers to achieve our contributions.

2.2 Coding and Analysis Procedure

The coding and analysis involved a systematic and iterative process with six authors (first author as primary coder, four

secondary coders, and the last author as the PI). This collaborative approach ensured the coding and analysis was robust,

comprehensive, and consistent across all the papers.

1Supplementary materials URL: https://tinyurl.com/PraxaSupplementary

Fig. 2. Example of selected schema and codes of the Wexler et al. [100] paper. The colors illustrate how various schema proper-
ties captured contribute to the different building blocks of PRAXA: dataset, model, motivations, user_operations, and
system_operations.

Manuscript submitted to ACM
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PRAXA : A Framework for What-If Analysis 5

The process began with five coders (primary and secondary) independently analyzing three distinct papers each,

covering different what-if analysis methods (15 papers in total). Each coder identified important features to extract from

the papers, such as the motivation behind the analysis, its definition, dataset type, input variables, output variables, models

used, task performed, visuals adopted for providing input and observing the output, and example what-if analysis questions,

which collectively formed the initial schema that guided the analysis of each paper. To strengthen the schema used across

all coders, the primary coder re-coded the twelve papers analyzed by the secondary coders and met each secondary coder

in one-on-one discussions to understand the features in their schema. After the individual discussions, all five coders met

to consolidate their schemas, clarify definitions, and refine codes (i.e., predefined values) to ensure consistent granularity

across all coders. For example, the ‘target audience’ feature was coded into four categories reflecting the primary role

emphasized in the papers: domain experts (specialists directly related to the subject matter), data professionals (such as

data scientists, analysts, and software engineers), researchers (those conducting studies or experiments within the field),

and end-users (the individuals or organizations who ultimately use the product or service). The finalized schema, which

outlined the key features to be captured from each of the papers, and the codebook, which listed and detailed the decided

codes for each feature, formed the foundation for coding the remaining papers.

In the first iteration, we coded 25 papers (revised 15 previously coded ones + an additional 10) using the finalized

schema. After completing this initial set, all coders and the PI, met to discuss the schema features and codebook, resolve

confusion, and ensure consistency. This collaborative review process was repeated at the end of each iteration. The PI

provided high-level perspective to keep codes not overly detailed nor excessively high-level. In the second iteration, we

coded 49 additional papers (i.e., 74 total papers). Following this iteration, we further refined the schema and codebook

based on discussions and feedback to enhance clarity and granularity. Finally, in the third iteration, the codebook was

revised to cover all 134 papers. The iterative coding approach ensured consistency and reliability across all the reviewed

papers. The final codebook with detailed descriptions is provided in the supplementary materials 1.

Each coder coded a distinct set of 27 papers (including those used to develop the schema and codebook), with the

primary coder re-coding additional papers throughout the process as a quality check. Coding each paper took 1.5–2

hours, involving deep reading of the paper to map relevant information onto the schema. Figure 2, illustrates this process

using Wexler et al.’s paper on “what-if analysis” [100] as an example. This paper introduces the What-If Tool, which

enables data scientists, analysts, and domain experts to inspect, analyze, and understand machine learning models through

interactive what-if analysis by requiring minimal coding.

After coding all the papers individually, the coders cross-analyzed a third of each other’s papers in pairs to ensure

reliability. Following individual and paired coding, the primary and secondary coders convened to synthesize the paper-

level codes related to ‘motivations’, ‘what-if analysis method’, ‘definitions’, and ‘challenges of what-if analysis’, into

broader high-level themes. These discussions took place over eight to ten virtual sessions (1.5 to 2.5 hours each), using

digital affinity diagramming to cluster the paper-level codes into broad themes in Google Spreadsheets. Additionally,

three to five hour-long discussions were held with all coders to discuss the review findings, clarify any ambiguities in

coding, and refine the themes.

3 The PRAXA Framework

In this section, we introduce the PRAXA framework that addresses the why, what, and how perspectives of what-if

analysis, as illustrated in Figure 3. We begin by describing why the reviewed works employed what-if analysis in terms of

their high-level motivations with accompanying examples (Section 3.1). Next, we discuss what the building blocks of

these analyses are (Section 3.2). We then move on to explain how the operations applied to the building blocks accomplish
Manuscript submitted to ACM



6 Gathani et al.

what-if analysis (Section 3.3). Finally, we formulate various types of what-if analysis, formalizing how each analysis type

is accomplished by combining the building blocks and operations (Section 3.4).

What?

Input Variables Model Type

Model

Output Variable

How?

Instances Values

Dataset

Features

Why?

Motivations

To interpret and debug models

Motivations

To leverage human knowledge in computationally
intractable problems

To address data quality challenges

To mitigate cognitive biases

To assess the impact of interventions on outcomes

To incorporate user preferences and constraints

Parameters

Scope* Perturb

User Operations

Derive* Constrain Reweight Compare

Transform* Rerun

System Operations

Expand* Optimize Retrain Generate

Fig. 3. The components of the PRAXA framework for what-if analysis are organized around three key dimensions identified through our
literature review: why, what, and how. The why dimension captures the underlying motivations for performing what-if analysis.
The what dimension defines its core building blocks: the dataset and the model. The how dimension describes the operational
mechanisms through which what-if analysis is performed, comprising both user_operations and system_operations that act
upon the what components. The operations marked with * represent more general data analysis operations that, while not exclusive
to what-if analysis, are frequently observed and play a key role in enabling it.

3.1 Why?

Here, we present the high-level motivations discussed in the papers for employing what-if analysis. If a paper discussed

multiple motivations, we coded each explicitly, so the motivations are not mutually exclusive. Alongside examples of

different what-if analysis methods for each motivation, we highlight overlaps (e.g., different methods described as the

same) and inconsistencies (e.g., similar methods given different names). This underscores the need for a systematic

understanding of what components define what-if analysis methods and how they can be combined to characterize distinct

types of what-if analysis.

To interpret and debug models (29.8%). The reviewed literature often described predictive models as “black boxes” [5,

23, 96, 108]. This led to challenges in interpreting how models arrive at particular predictions [51, 96] and debugging

them to identify and fix unexpected behaviors [39, 95].

Examples. Evirgen et al. [25] investigate text-to-image models by removing keywords from text prompts and measuring

their impact on generated images. Such “sensitivity-based explanations” help provide insight into the model’s behavior,

robustness, and invariance properties by revealing which inputs shape the model’s outputs. Hohman et al. [42] support

model interpretability through “counterfactuals”, which observe how modifying input features affects model predictions,

and “feature importance”, which ranks the features that most influence the overall prediction outcomes. Roberts and

Tsiligkaridis [71] explore the interpretability of image classification models by “perturbing inputs” and observing changes

in predictions. They also introduce “counterfactuals”, showing how minor image modifications alter classifications to

support model debugging. Yamanaka et al. [107] get Pareto front “optimal solutions” that give better model performance.

Hence, many different what-if analyses are used to probe different aspects of the model and in turn, understand and debug

their behavior.
Manuscript submitted to ACM



PRAXA : A Framework for What-If Analysis 7

To assess the impact of interventions on outcomes (17.16%). In contrast to the previous model-centric motivation,

some reviewed works adopt an outcome-centric perspective, using what-if analysis to simulate and assess the effects

of deliberate interventions or changes in input variables or model parameters on the model’s predicted outcomes. By

systematically observing how the model’s output responds to various interventions, these works quantify the impact of

various interventions, thereby supporting scenario evaluation and guiding decisions about which actions to implement.

Examples. Wu et al. [103] used “what-if analysis” to alter user opinions and predict sentiment shifts in tweets, while

Luo et al [60] applied “sensitivity analysis” to understand how changes in climate features like precipitation and emissions

impact water demand. Crisan and Correll [19] examined the “sensitivity of topic modeling” by removing stop terms or

adding text, and Luboschik et al. [58] let analysts test “parameter configurations” to study their influence on protein

movement dynamics. Across such cases, simulating scenarios helps anticipate interventions before committing resources

or execution, enabling more robust decision-making.

To address data quality challenges (13.43%). Data quality significantly impacts the reliability of analytical models.

What-if analyses was conducted to tackle data quality issues, such as missing or incomplete data and uncertainty in the

data by enabling users to simulate the effects of missing or noisy data and analyze how uncertainty in input variables

influences model predictions.

Examples. Models often rely on ground truth labels for robust predictions, which are infeasible in real-world domains

like climate simulation. Biswas et al. [7] addressed this by simulating a few scenarios to study the “sensitivity” of climate

parameters on precipitation. Similarly, Zhang et al. [112] used “what-if analysis” to explore different promotion strategies

under partially observed market conditions, simulating scenarios such as varying customer engagement. And, Hagele et

al. [38] applied “sensitivity analysis” to examine how input uncertainty, like noise in student scores, affects projections of

student rankings.

To leverage human knowledge in computationally intractable problems (26.11%). Exploring all possible parameter

combinations or running thousands of simulations is often impractical due to resource and time constraints [86, 114].

What-if analysis was conducted to address these challenges, allowing users to focus on selected scenarios rather than

exhaustively simulating all possibilities. By integrating human intuition and domain knowledge, these methods narrow

the space of simulations, enabling more targeted exploration while significantly reducing computational overhead.

Examples. In high-dimensional anomaly detection, evaluating the impact of different algorithms and feature subspaces

is challenging due to the large number of possible combinations and the sensitivity of results to parameter settings. Xu et

al. [106] address this issue by enabling “what-if” analysis to systematically vary algorithm choices and parameters, helping

users focus on promising configurations without exhaustively testing all possibilities. Likewise, in policy modeling,

refining parameters, modifying interventions, and adjusting scenarios is an iterative, labor-intensive, and programming-

heavy [85]. What-if analyses addressed such problems by automating “parameter exploration” [57], enhancing debugging

through detection of dissimilar parameter setting scenarios [27], and performing “reverse mapping” to identify parameters

for target outputs [79].

To mitigate cognitive biases (5.97%). Human biases frequently influence decision-making, potentially leading to skewed

outcomes. In few works, what-if analysis was employed to identify, mitigate, or better understand these biases, providing

insights into how different assumptions or data changes affect decisions.

Examples. Wang et al. [93] demonstrated how “exploring multiple hypotheses” helped mitigate healthcare experts’

anchoring bias (on initial symptoms) and consider alternative diagnoses. Additionally, other works demonstrated observing

many “counterfactual” scenarios to uncover audience biases, such as misinterpreting correlation as causation [9, 91]
Manuscript submitted to ACM



8 Gathani et al.

or drawing erroneous conclusions about feature-outcome relationships [45]. Further, integrating “constraints” when

exploring counterfactuals, such as allowing realistic or domain-specific changes in features only, ensures them to be

plausible and avoid leading to biased conclusions [10]. Further, “sensitivity analysis” also aided in addressing algorithmic

biases by exposing how sensitive automated ranking and recommendation algorithms are to data perturbations [1, 104].

To incorporate user preferences and constraints (11.19%). Another motivation identified was to ensure that model

predictions align with user needs and constraints. In many applications, users’ specific needs, goals, and constraints shape

how they interact with and derive value from predictions. What-if analysis can be a valuable tool for personalization,

adapting the recommendations to such needs.

Examples. Wang et al. [98] developed an interface that iteratively generates “algorithmic recourse plans” of suggested

changes to input variable values that would result in loan approval. It allows end-users to customize plans by specifying

which features to modify and defining acceptable ranges for them, thereby aligning the recommendations with user

preferences and constraints. Similarly, Gathani et al. [30] perform “constrained analysis” to help business users determine

the best marketing spend across different channels while adhering to budget limitations. Lee et al. [52] recommend

optimal sleep schedules, tailoring outputs based on users’ individual routines and constraints.

3.2 What?

Many types of analyses, including but not limited to hypothesis testing, model evaluation, what-if analysis, and error

analysis, require two components: a dataset and a predictive model. The what question describes the specific dataset

and model subcomponents that distinguish what-if analysis from the other types of analysis.

B.1. Dataset

We found that what-if analysis has been applied to various types of datasets: multivariate (68%; 12% geo-related/spatial

and 2% time series/temporal), image (10%), textual data (9%), audio (1%), and no datasets (12%), where the analysis

was discussed theoretically or empirical data was not explicitly mentioned or explained. We define the following dataset

subcomponents across these types:

• instances: fundamental units of data (e.g., rows in tabular datasets, individual images in image datasets, or entire

documents or prompts in textual datasets)

• features: properties associated with each instance, varying by dataset type. For example, Wexler et al.’s [100]

conducted what-if analysis on a tabular dataset with quantitative (e.g., Capital Gain), categorical (e.g., Gender),

and ordinal (e.g., Capital Gain) features. Similarly, Park et al. [67] perform what-if analysis on images features

like pixel intensities, color distributions, and texture patterns. In textual datasets, features range from words or

sentences [55] to textual embeddings [2].

• values: specific instantiations of features For example, ‘Male’ or ‘Female’ for Gender, ‘0 to 5000’ for Capital

Gain, pixel intensities or color channel values (e.g., RGB values) in images, or words, n-grams, or embedding

vectors in text.

B.2. Model

The model component captures the data feature relationships and predictions. It requires specifying inputVariables

from the dataset, the outputVariable to predict, the supported modelType, and the modelParameters. For every

what-if analysis performed, different models may be used.

B.2.1. Input Variables

Manuscript submitted to ACM
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These are dataset features that are considered inputs of the model and those who influence the outputVariable.

They may already exist (existingFeature) in the dataset or be derived (derivedFeature) from existing features using

simple arithmetic operations or complex statistical functions.

B.2.2. Output Variable

An outputVariable is a dataset feature acting as the dependent variable for the model. Like input variables, it can

either already exist in the dataset (existingFeature) (e.g., Income output variable in Wexler et al [100] paper) or be

derived (derivedFeature) from existing features (e.g., Goodness calculated by pairwise comparisons between all data

points). Typically, all what-if analyses aim to achieve objectives related to a single output variable.

B.2.3. Model Type

This refers to the type of model, which can be characterized by several factors: the nature of the output variable (e.g.,

categorical vs. continuous), the underlying algorithmic family (e.g., tree-based, regression, neural networks), and the

specific application context for which what-if analysis is employed. We broadly categorize the models based on whether

the model is established or user-defined because it reflects how the model is obtained to use for what-if analysis:

(1) Established Models (establishedModel) (75.94%): Most works used well-established models like machine learning

models (e.g., regression [22, 30, 47], GAMs [42, 98], neural networks [67, 95], SVMs [24, 36, 106]), deep learning

models (e.g., CNNs [39, 54, 67], BERT [6, 56], sequence-to-sequence [82]), optimization models (e.g., SEIR [73, 85],

Monte Carlo Simulations [8, 85]), dimensionality reduction models (e.g., PCA [14, 24, 65], MDA [65]), and domain-

specific models (e.g., WRF climate model [7], GCAM forecasting model [60]).

(2) User-Defined Models (userDefinedModel) (15.04% specified by authors, 0.75% defined by end-users at runtime): A

few works used specially defined models to allow tailoring to prior knowledge known about the relationships between

variables. For example, in the marketing domain, Gathani et al. [32] model the Impression output variable as a linear

combination of various input features; 2×Paid Media Ads + 1×Website Visit + 1×Video Completion Rate, while

Gortler et al. [37] demonstrate a non-linear user-defined model by applying a scaling factor to the input covariance

matrix, resulting in complex transformations of the projection directions.

Across the reviewed works, 35.34% of models were trained entirely by the authors [39, 93], 6.77% combined author-

trained and user-defined models [95, 103], 24.81% used fine-tuned third-party pre-trained models [11, 77], and 9.77%

employed algorithms newly developed by the authors [18, 92].

B.2.4. Model Parameters

These are internal variables learned during training that map inputs to outputs. Examples include featureWeights

and biases in machine learning models, and kernels, attentionWeights, and positionalEncoding in deep learning

models. For instance, Görtler et al. [37] varied a scalingFactor affecting covariance in PCA, while Zhang et al. [112]

helped marketing experts rank influential promotions by learned featureWeights.

3.3 How?

The how perspective outlines the methods for conducting what-if analysis through two sets of operations: user_operations,

initiated by users, and system_operations, executed by systems.

C.1. User Operations

To conduct what-if analysis, users interact with systems through a variety of operations that allow them to manipulate,

explore, and reason about both the data and model behavior. Based on our analysis, we identified six common types

of user operations. Among these, the first two—scope and derive (marked with *)—are general operations frequently
Manuscript submitted to ACM



10 Gathani et al.

observed in SQL querying and exploratory data analysis. Although not exclusive to what-if analysis, they often serve as

essential operations that establish the necessary context for more focused what-if analysis.

C.1.1. Scope

The scope operation defines specific parts of the dataset as the focus of a what-if analysis. This operation can be

applied to instances, features, or both. For example, Zhang et al. [112] allowed marketing analysts to narrow their what-if

analysis by selecting specific instances, illustrating scoping at the instance level (instanceSubset). Scoping can also

be feature-based. For instance, Gathani et al. [32] excluded economic indicators such as the Consumer Confidence Index

and Producer Price Index, recognizing that business users cannot influence these variables. This represents a feature-level

subset (featureSubset). The scope operation can also be applied beyond multivariate datasets. For instance, for textual

datasets, Wu et al. [101] clustered unlabeled documents into semantic groups (e.g., holidays, date formats), illustrating

instance-level scoping to examine model behavior within targeted subsets.

C.1.2. Derive

The derive operation creates new input or output features from existing ones, using simple arithmetic or complex

transformations. For instance, Zgraaggen et al. [111] define the Total outputVariable by subtracting inputVariables

Expenses from Income, while Ahn et al. [1], introduce the Miscalibration output variable via complex means like KL

divergence measure to quantify algorithmic harms in a movie recommendation dataset.

C.1.3. Perturb

The perturb operation modifies the values of some components to examine their impact on other components. We

identified two primary variations: perturbing inputVariables values and learn its effects on the outputVariable,

and perturbing modelParameters to study how changes in the model’s internal parameters affect its predictions or

behavior. An example of the former is, Wang et al. [92] examining how reducing Price (inputVariable) by 10% would

influence Sales (outputVariable), while of the later is Liu et al. [55] changing the attention (modelParameter) in

natural-language-based convolutional neural networks to evaluate its impact on sentence-level inference tasks.

C.1.4. Constrain

The constrain user operation places restrictions on certain components and can be applied in two ways:

(1) Constraining model Function: Users can impose constraints on the model function to restrict the mapping between

inputVariables and outputVariable. Examples include monotonicity constraints (e.g., ensuring that Sales should

not continue to increase linearly after a threshold as Unit Price rises [31]), or fairness constraints that that exclude

sensitive attributes such as Gender [5]. These operate at the level of model parameters and functional relationships.

(2) Constraining Variables: Users can directly limit the values or categories of specific inputVariables or outputVariables.

For example, quantitative variables can be restricted between lower and upper bounds (e.g., constraining Blood

Sugar between ‘4.7 and 6.3’ [5]), while categorical variables may be fixed to specific values (e.g., fixing Gender to ‘Fe-

male’ [36]). Constraints can also express objectives such as minimize, maximize, or closeTo(referenceDataPoint),

for example, maximizing Sales [32], minimizing Deal Closing Rate [30], or ensuring prediction remain close to a

reference point [86, 97, 98].

In summary, the constrain operation requires specifying both the target (a modelParameter, inputVariable, or

outputVariable) and the form of constrainValue (lowerBound, upperBound, categoryBounds, or objective-oriented

constraints like minimize, maximize, or closeTo(referenceDataPoint)).

C.1.5. Reweight
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The reweight user operation modifies the relative importance expressed as weights of specific inputVariables

within a model, guiding model predictions towards a desired direction. The reweighting can stem from users’ domain

knowledge or prior experiences. For example, Pajer et al. [66] reweighted featureWeights like Price, Mileage, and

Guarantee Period in a car ranking model to observe their impact. It involves two key subcomponents: the inputVariable

whose weight is to be adjusted, and the corresponding featureWeight assigned to it, allowing users to align model

behavior with real-world needs or expectations.

C.1.6. Compare

The compare operation lets users actively select and juxtapose the outcomes of multiple what-if analyses. Unlike

atomic operations such as perturb or constrain, which modify variables or models directly, compare operates on

the results of executed scenarios. In practice, the user specifies which scenarios to include in the comparison–such as

different subsets of the dataset (via scope), alternative perturbations of variables (via perturb), or varied model or

variable constraints (via constrain)–and the system aligns their outputs along common axes (e.g., predicted outcomes or

performance metrics).

Comparison is crucial for evaluating trade-offs and relative impacts across scenarios. For example, Bhattacharya

et al. [5] contrasted treatment recommendations across patients, Evirgen et al. [25] examined prompt variations in

text-to-image generation, and Park et al. [67] assessed classifier robustness under parameters like Rotation and Blur.

Thus, while compare operates at a higher abstraction level, it remains a key operation within our framework because it

formalizes the user’s action of selecting and contrasting scenarios to reason across what-if outcomes.

C.2. System Operations

In response to user_operations, systems perform internal operations to carry out the requested transformations

or updates. We identified six types, with the first two—transform and expand—being general-purpose operations

common in broader data processing and analysis workflows. While not unique to what-if analysis, they are included in

our framework to support more targeted analyses.

C.2.1. Transform

In response to the scope user operation, the system automatically executes the corresponding transform system

operation to refine the dataset based on the defined subset. This operation ensures that downstream analyses only act

on the relevant portion of the data. This process mirrors the data transformation techniques like “filter” and “slice and

dice” techniques commonly used in exploratory data analysis. For example, Dingen et al. [22] scoped their analysis

to ‘Secondary’ School Students filtered by the ‘Math’ Subject in the ‘Portugal’ City, producing a specific subset that

informed where to perform the subsequent what-if analysis.

C.2.2. Expand

The expand system operation extends the dataset by adding newly derived features, making them available for

downstream what-if analysis. It is automatically triggered by the derive user operation, which enables users to define new

features of interest. By reflecting these transformations in the data, the system supports more tailored what-if analyses.

C.2.3. Rerun

The rerun system operation re-executes the model’s inference or evaluation pipeline to generate updated predictions

based on the current state of the system. It is automatically triggered by user operations that modify the dataset (e.g.,

scope, derive, perturb) or alter the model configuration, such as updates to modelParameters through operations like

reweight or constrain on inputVariables. By reapplying the model with these updated inputs, the system generates

revised predictions to support interactive what-if analysis.

C.2.4. Optimize
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The optimize system operation is performed to achieve the desired objective on the outputVariable. It computes

inputVariables values required to achieve the desired objective based on the outputVariable, based on the learned

function of the model. For instance, Cheng et al.[15] identified required Test Scores and GPA for getting university

admission.

In our reviewed works, the optimize system operation is often invoked following the constrain user operation. This

is because once users specify bounds on permissible inputVariables, desired outcomes for the outputVariable, or

objectives (maximize, minimize, or closeTo(referenceDataPoint)), the system searches the feasible space to find

optimal inputVariable configurations. Mainly three variations were observed:

(1) maximize the outputVariable: This aimed to attain the maximum value of output variable, such as for Sales [30, 32],

Income [100], or Retention Rate [30].

(2) minimize the outputVariable: This aimed to attain the minimum output variable value, such as for Risk of

Diabetes [5] or Number of Infections [85].

(3) attain a target outputVariable or closeTo a target outputVariable: Adjust inputVariables to make the

outputVariable reach a desired target outcome or approximate a desired target or reference point. For example,

keeping Precipitation estimates close to baseline [41]. A special case is counterfactuals, where the system finds

minimal input changes to yield a different outcome [5, 40, 77].

C.2.5. Retrain

The retrain system operation updates the model when user operations alter either the dataset or the model itself.

Retraining can occur in two ways based on what component is modified. In one case, the same model is retrained

because of component adjustments. For example, user operations like reweight, which modify featureWeights, change

the relative importance of input variables, requiring the model to relearn its internal representations. Pajer et al. [66]

illustrated this in a car ranking system, where altering the weights of features prompted model retraining to reflect new

ranking priorities. Similarly, operations like scope and derive, which filter the dataset to a subset or introduce new

features, respectively, alter the data distribution or structure, necessitating retraining to maintain consistency and validity

in predictions. In another case, the model itself is changed. For instance, Wexler et al. [100] allow to compare what-if

scenarios across different model types, such as linear classifiers and neural networks. Therefore, changing the underlying

user operations or model architecture triggers retraining to ensure that predictions remain accurate.

C.2.6. Generate

The generate system operation produces a comprehensive set of what-if analysis scenarios each consisting of a

configuration of inputVariables and its corresponding outputVariable predictions computed using the underlying

model. This operation enables users to explore the many possible inputs and their predicted outcomes to identify

interesting or actionable scenarios. The generated scenarios share the analytic context with from variations across specific

components. For example, scenarios may apply the same perturb operation across different data segments via scope

(e.g., geographic regions [30]), or generate past-case analogs (e.g., credit card defaulters) under varying constraints that

must be satisfied [92].

3.4 Types of What-If Analysis

From our review of the components and how they were combined to perform what-if analyses, we identified three primary

types of what-if analyses: (1) SENSITIVITY, (2) GOAL SEEK, and (3) IMPORTANCE. In addition, we observed a broader

fourth type, SCENARIO COMPARISON, which often integrates aspects of the others. Figure 4 illustrates how each type is
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Fig. 4. Combining different components of what-if analysis to form its different TYPES.

operationalized: the user operations applied to different what components, the corresponding system operations that are

automatically triggered, and the resulting analytical outputs.

Each type aligns with core user operations: SENSITIVITY via perturb, GOAL SEEK via optimize, and IMPORTANCE

via reweight. We define these types below, formalize them as: what-if analysis type function(parameterized

by components) → output, where := denotes the definition of each component. We also provide examples from our

review and highlight representative visualizations used for both conducting each what-if analysis and for observing its

predictions. Extra details can be found in supplementary materials 1.

D.1. SENSITIVITY

SENSITIVITYwhat-if analysis–often referred to as various terminologies such as “perturbation-driven exploration” [55],

“parameter sensitivity” [7, 73], “forward-mapping” [14, 81], “what-if analysis” [21, 41, 109], among others–is a systematic

approach to understand how altering specific input variables or model parameters influence the output variable or model

predictions.

We categorize SENSITIVITY what-if analysis into two primary types based on what is being altered:
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(1) INPUT SENSITIVITY (49.25%): Varying values of inputVariables to examine the resulting effects on the outputVariable.

For example, Victor et al. [89] explored how adjusting production parameters such as Spinning Speed, Number of

Spin Positions per Meter, and Belt Speed influences the Product Quality of nonwoven materials.

(2) MODEL PARAMETER SENSITIVITY (18.66%): Altering model parameter values to examine their effect on the model

predictions. For example, Liu et al. [55] perturbed the internal states of a neural network-based machine learning

model by adjusting the attention weights assigned to individual words or word pairs. This allowed them to analyze

the impact on the model’s classification of a sentence as entailment, contradiction, or neutral.

Before conducting any type of SENSITIVITY analysis, user operations like scope, derive, or both may be optionally

applied to narrow analysis to a desired subset of dataset or have new features be added to the analysis respectively. But, the

main operation enabling SENSITIVITY analysis is the perturb operation, which is used to specify the alterations. Based

on the perturbation type (perturbType) described in the earlier section, two approaches of performing the SENSITIVITY

what-if analysis can be taken:

(1) over Individual Points, when perturbType = pointValue; a single adjustment is applied per input variable or

model parameter. (2) over Continuous Ranges, when perturbType = rangeValue; adjustments over a range of values

are made to input variables or model parameters to learn the prediction trend of the output variable.

In practice, users may also apply constraints via the constrain operation (e.g., fixing certain variable values while

varying others, or limiting changes to feasible ranges) to ensure realistic conditions for the analysis. Every time the

perturb operation is applied, the system automatically executes the rerun operation to re-evaluate model predictions

based on the modified inputs.

SENSITIVITY(α, β, γ, δ) → outputVariable

α: dataset,

β: model,

γ: user_operations := {[scope(dataset)]* | [derive(newFeature)]* | [constrain(inputVariables)]*}

& [perturb(inputVariable|modelParameter, perturbType)]+,

δ: system_operations := [rerun()]+

Visualization & Interaction. This type of analysis requires interactive perturbation of system components to examine

output effects. In our review, the most common input interactions for the SENSITIVITY analysis type were sliding a

numeric parameter (Fig. 5A [67]; see also [43, 51]), and selecting categorical variables (Fig. 5B [41] see also [30, 86])

(33%). Less frequent interactions include editing input values directly in tables (Fig. 5C [100]; see also [85, 105])

(5%), and textual modifications (Fig. 5D [55]; also [112]) (10%). We also observed research prototypes that allow

dragging data points in visualizations (Fig. 5E [65]; see also [22, 111]) (15%), or spatial manipulation of structures

(Fig. 5F [104]; also [80]) (5%). Although promising, these latter techniques have seen limited adoption, likely due to

higher implementation effort.

In contrast, results from the SENSITIVITY analysis type were communicated through a wide range of visualizations,

though some clear preferences emerged. Scatterplots were the most common (21%), reflecting most works discussing

classification tasks when discussing relationships between input perturbations and output changes. Heatmaps (15%) were

also widely used, especially when comparing sensitivities across multiple variables. Line charts (14%) and bar graphs

(12%) provided straightforward ways to track trends and compare magnitudes.

Other representations appeared less frequently. Tables (8%) were often paired with charts to provide detailed numerical

validation. Graphs and trees (9%) and maps (9%) supported more specialized hierarchical or spatial scenarios. Parallel
Manuscript submitted to ACM



PRAXA : A Framework for What-If Analysis 15

(A) Sliders in VATUN [67]

(B) Drop-downs in HAiVA[41] (C) Text Modification in NLIZE[55]

(E) Direct Manipulation in
Drag and Track [65] (F) Direct Manipulation in Graphs [104]

(D) Direct Table Editing in What-If Tool [100]

Fig. 5. Examples of input interactions for SENSITIVITY analysis type from reviewed literature.

coordinate plots (PCPs) (4%) were rare, despite their suitability for high-dimensional data, suggesting barriers to adoption.

A small set of domain-specific visuals–including icicle plots, donut plots, flowcharts, and matrices (1–2% each)–were

seldom used, likely due to their complexity. Textual annotations (5%) and images (4%) occasionally supplemented visual

outputs, while clustering techniques (3%) and box plots (3%) appeared sporadically.

D.2. GOAL SEEK

In GOAL SEEK what-if analysis, the aim is to determine the combinations of inputVariable values that achieve the

optimize the outputVariable according to the user-specified goal. We found 17.16% of reviewed works conducting this

type of what-if analysis, often referred to by different terminologies, such as “inverse modeling” [63], “segmentation” [81],

“backward mapping” [14, 81], “parameter setting” [57], all representing the same analysis.

The system employs the optimize operation to explore and evaluate multiple input variable configurations that meet

the defined goal. Often, users further refine the search space using the constrain operation, which allows them to restrict

variables within explicit bounds or categories, fix maximize or minimize objectives on them, or specify needs of being

close to certain input values. Applying such user operation helps incorporate domain knowledge and external constraints,

ensuring the predictions adhere to realistic or predefined conditions.

For example, Tariq et al. [85] conduct this analysis to seek the optimal policy involving input variables like School

Closure, Masks, Hospital Capacity, etc. to minimize the Number of Infections. Similarly, Wang et al. [98] perform this

analysis to determine input variables like Credit Utilization, Home Ownership, Loan Amount, among others to achieve

the target outcome of Loan being ‘Approved’. Wang et al. further incorporate constraints or user needs; for instance,

restricting the Loan Amount between acceptable ranges ‘25000’ to ‘40000’, ensuring realistic recommendations. The

outputs of this analysis include both the optimized outputVariable and the corresponding solution paths of the optimized

inputVariable values. For instance, adjustments in Wang et al.’s analysis include setting Loan Amount to ‘30000’,
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reducing Credit Utilization from ‘90.1’ to ‘63.75’, changing Home Ownership from ‘Rent’ to ‘Mortgage’, among other

modifications.

GOAL SEEK(α, β, γ, δ) → (inputVariable:values & outputVariable)+

α: dataset,

β: model,

γ: user_operations := [scope(dataset)]* | [derive(newFeature)]* |

[constrain(inputVariable|outputVariable)]+,

δ: system_operations := [optimize()]+

Visualization & Interaction. The most common interfaces involved sliding numeric parameters (Fig. 6A [15] (50%); see

also [45, 54, 79, 98]) and selecting categorical conditions, such as drop-down menus (Fig. 6B [5]; see also [30]), radio

buttons [68, 101], or checkboxes [53, 61] (33%). Other forms included entering target values in textboxes (Fig. 6C [30];

see also [8, 18, 31, 111]) (16%) and defining ranges through region selections (Fig. 6D [113]; see also [3, 70, 103])

(8%). While these interactions allowed users to explicitly define constraints, some systems bypassed direct input

altogether, instead predicting and presenting optimized scenarios automatically based on predefined or implicit objectives

(Fig. 6E [99]; see also [6]) (6.3%).

(A) Sliders in DECE [15]

(B) Drop-downs
in DECE [15]

(C) Textboxes in
Decision Studio [30]

(D) Region Selection in [113]

(E) Present different
scenarios in Many Plans [99]

Fig. 6. Examples of input interactions for GOAL SEEK analysis type from reviewed literature.

The results of GOAL SEEK analysis typically included optimized input variable values along with their corresponding

predicted output values. These were often conveyed through a combination of visual representations. For example,

PCPs showing various input variable combinations or change from original values (Fig. 7A [15, 36]), annotations and

heatmap showing change in input variable values (Fig. 7B [35], E [17], F [103]) (29%), line charts showing output value

progression relative to selected inputs [54, 111] (20%) and scatterplot distribution shift for various model hyperparameters

(Fig. 7C [2]; see also [18, 92]) (12.5%).

D.3. IMPORTANCE

The IMPORTANCE what-if analysis comprises 19.40% of reviewed works. This analysis is referred to under various

terminologies, such as “influential factors” [105, 112], “feature-importance scores” [42, 45, 51], “driver importance

analysis” [30, 32], “guided back-propagation” [54], among others, but all represent the same fundamental concept.
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(B) Annotations, heatmaps in ViCE [35]

(C) Scatterplots in [63]

(A) PCPs in DECE [15] and Advice [36]

(D) Moderator input if Troll
output interrupted in Social Simura [68]

(E) Heatmap showing Different breach widths causing floods [17]

(F) Heatmap OpinionFlow [103]

Fig. 7. Examples visuals used for showing results for GOAL SEEK analysis type from reviewed literature.

The purpose of this analysis is to understand the significance of inputVariables as a predictor for the outputVariable.

Typically, this is achieved by computing featureWeights using techniques such as SHAP, LIME, probabilistic signif-

icance, or model coefficients. These feature weights rank input variables from most to least influential based on their

contribution to the model’s predictions. Most related works do not incorporate direct user interaction but instead focus

on observing feature importance through scores [5, 30, 32, 42, 56] or rankings [25, 51, 66]. For example, Wang et

al. [97] investigate which words in a prompt are most influential in improving predicted text’s Quality and Diversity

scores. Similarly, Zhang et al. [112] analyze the factors influencing Sales Volume, identifying that Price and Competition

consistently have higher importance compared to Promotion, which has a lesser impact.

Additionally, users may actively adjust the significance of input variables via the reweight user operation, allowing

users to prioritize specific input variables based on their preferences. For example, Pajer et al. [66] allowed users to assign

custom weightage to input variables like Price, Mileage, and Age when ranking cars with goals to minimize Price and

maximizing the Guarantee Period.

The scope and derive user operations can optionally be applied in this type of analysis to restrict the input variables

considered as well as add desired features in the analysis. This operation allows users to focus on the significance of

specific input variables concerning the output variable according to users’ needs. For instance, Gathani et al. [32] rank the

importance of investments made on advertising channels to determine which channels to invest in to increase the Sales.

After these user operations are performed, the system automatically triggers the retrain operation to update the model

based on the changes.
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(B) Selection in [5]

(A) selection in [31]

(D) dragging in [22]

(C) text input in [97]

Fig. 8. Examples of input interactions for IMPORTANCE analysis type from reviewed literature.

IMPORTANCE(α, β, γ, δ) → refinedModel

α: dataset,

β: model := featureWeights,

γ: user_operations := [scope(dataset)]* | [derive(newFeature)]* | [reweight(inputVariables)]+,

δ: system_operations := [retrain()]+

Visualization & Interaction. Most reviewed works in IMPORTANCE analysis required minimal user interaction, with most

systems automatically computing feature importance scores based on model internals. When user input was present, it

typically involved selecting relevant input variables or reweighting them to reflect user priorities. Across the reviewed

works, these input interactions were employed via selection (Fig. 8A [31] and B [98]) (38%), text inputs (Fig. 8C [97])

(27%), and sliders (15%) [5, 98] being the most common. Less frequent input interactions included direct dragging on

visualizations (Fig. 8D [22]; see also [3]).

Output visualizations in IMPORTANCE analyses primarily used bar charts (Fig. 9A [30, 31]) (21%) and heatmaps

(Fig. 9C [22]; see also [56]) (15%) to display feature importance scores. Other outputs included ordered list of text outputs

(Fig. 9B [42]) (12%) to present ranked variable lists or numerical importance values. In textual datasets, importance was

illustrated using lesser observed illustrations like word clouds (Fig. 9E [56]) and saturation encoding (Fig. 9D [25]).

D.4. SCENARIO COMPARISON

The SCENARIO COMPARISON analysis type, present in 19.40% of the reviewed works, reflects a broad and compound

type that spans across the other what-if analyses. It centers on the generate system operation, which automatically

produces a diverse set of plausible inputVariable configurations and their associated outputVariable predictions

without requiring users to specify goals or manually manipulate variables. This allows users to explore a wide spectrum

of possible scenarios, supporting open-ended investigation into model behavior and surfacing unexpected or interesting

relationships between inputs and outputs.
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(E) spatial word cloud in [56]

(C) heatmap in [97]

(B) Ordered list of features by
importance in GAMUT [42]

(A) Positive Negative Bar Chart in [30] and [31]

(D) saturation encoding in [25]

Fig. 9. Examples of output visuals for IMPORTANCE analysis type from reviewed literature.

While it may share similar components as GOAL SEEK or SENSITIVITY analyses types, it differs in intent and interaction.

In GOAL SEEK, users specify a goal of the outputVariable or a desired output of it, and optimization is conducted to find

combinations of inputVariable values to achieve it. In SENSITIVITY, users perturb inputVariables to observe changes

in outputVariable. In contrast, SCENARIO COMPARISON does not take any explicit objective or input manipulation but

automatically generates and presents the users with many scenarios belonging to the same analysis type. In response, to

make sense of the many generated scenarios, users often engage in the compare operation—noting model outputs one

scenario at a time or juxtaposing scenarios to examine variations across different component interventions. For example,

Browne et al. [11] generate perturbed images to explore visual resistance strategies against Corporate Surveillance. Wang

et al. [92] take a similar approach by providing multiple input scenarios with similar starting conditions but different

predicted outputs. Some works also provide comparison features to distinguish these scenarios from one another [78, 113].

SCENARIO COMPARISON(α, β, γ, δ) → (inputVariable:values & outputVariable)+

α: dataset,

β: model,

γ: user_operations := {[scope(dataset)]* | [derive(newFeature)]*} & [compare(inputVariable:values &

outputVariable)+],

δ: system_operations := [generate(inputVariable:values & outputVariable)]+

Visualization & Interaction. Similar to SENSITIVITY and GOAL SEEK analysis, a few of the SCENARIO COMPARISON

analysis employed sliders [48, 77, 111], selection tools such as drop-downs [10] and checkboxes [61], and textboxes [13,

77, 111] to filter down to different scenarios. But some reviewed works did not require any user input; instead, they

automatically generated alternative scenarios for exploration and comparison (Fig. 10A [1]; see also [54, 78, 110]).

The visual representation of this type closely resembled those used in GOAL SEEK analysis. Common approaches

included bar charts [13, 77, 96], line charts [10, 54, 92], histograms [54, 61], and scatterplots [48, 92, 110] to illustrate

the range of possible input values in small multiples (Fig.10B [8] and C [110]). Additionally, some works present raw

tables listing multiple generated scenarios alongside their predicted output values [44, 54, 111].
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(A) Comparison of scenarios [1]

(B) Small multiples of contour plots [8]

(C) Small multiples of traffic volumes and prediction
errors across space [110]

Fig. 10. Examples of output visuals for COMPARE SCENARIOS analysis type from reviewed literature.

4 Case Studies

To demonstrate the practical utility of our framework, we present two case studies that illustrate how complex what-if

analyses can be deconstructed into their fundamental components and categorized into the specific types of what-if

analyses we find. In the first case study, we examine how a commonly discussed analysis of “counterfactuals” could be

understood as either GOAL SEEK or SCENARIO COMPARISON analyses, depending on users’ motivation and operation. The

second case study focuses on “parameter space exploration”, especially in dimensionality reduction tasks which can align

as SENSITIVITY or GOAL SEEK analyses types.

4.1 Counterfactuals Across Different WIA Types

Many reviewed works focus on providing “counterfactuals”, but the terminology has been used in different ways across

domains. In machine learning interpretability, counterfactuals are typically defined as the minimal change in data that

flips the model’s prediction [15], with the goal to provide actionable recourse for users or to get transparency in decision

boundaries of a model. In the context of causal inference, the lens shifts to potential outcome under different intervention

conditions than the ones actually observed, for example what needs to change (i.e., intervention) for the alternative

outcome (i.e., potential outcome) to happen [93] or how to change inputs (i.e., intervention) to get Q instead of P (i.e.,

contrasting potential vs observed outcome)? [97]. Further, in the visualization context, counterfactuals is framed more

loosely as the changes to input features that would lead to an expected model prediction [98] or instances similar to a

given subset, but yielding different predictions [45].

Despite these differences, all the variations fundamentally share the same analytical goal: to identify what input values

would lead to a desired or alternative outcome. According to the PRAXA framework, all of these variations map to the

GOAL SEEK type of what-if analysis, but they differ in the components emphasized, the kinds of constraints applied, and

the goals users pursue. We illustrate this across three representative cases.

Counterfactuals in ML Interpretibility. Cheng et al. [15] developed a system that helps non-admitted students

explore how profile features such as GRE score, TOEFL score, and CGPA could be minimally adjusted to flip the

prediction from Rejected to Admitted.
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• system_operation: optimize searches for the smallest changes to change the model’s output from ‘Rejected’ to

‘Accepted’.

• user_operation: Students apply constrain to keep modifications realistic, e.g., bounding GRE between ‘320–340’

or University Rating ‘≤ 4.5’.

In this setting, counterfactuals operate as GOAL SEEK by revealing the smallest feasible adjustments to features while

staying within realistic bounds.

Counterfactuals for causal inference. Wang et al. [97] illustrates counterfactual suggestions as asking: what would

the message’s quality and diversity be when alternative words are proposed (e.g., replacing terms with semantically

related ones). Here, the counterfactual is not about flipping or achieving any target outcome but about exploring potential

outcomes under different interventions at the word level. This maps to GOAL SEEK what-if analysis type but with the

following components:

• system_operation: The optimize operation is used to propose word edits that move a message toward higher-

quality or more diverse predictions.

• user_operation: The constraint operation is implicitly applied by choosing which counterfactual word substi-

tutions are feasible or contextually appropriate.

Here, counterfactuals take the form of GOAL SEEK by examining how outcomes shift under alternative interventions,

contrasting potential with observed results.

Counterfactuals in visualization context. Wang et al. [98] generate counterfactual recourse plans for loan applicants

by exploring alternative values of features such as FICO Score, Credit Utilization, or Annual Income. The output variable

is whether Loan Approved or Not Approved.

• system_operation: optimize proposes feasible feature adjustments that achieve Loan Approved.

• user_operation: Users optionally apply constrain, e.g., fixing Payment Period at ‘36 months’ or bounding

Loan Amount between ‘$25,000 and 40,000’.

In this case, counterfactuals align with GOAL SEEK through the generation of many diverse, actionable recourse options

rather than a single minimal change.

In some cases, especially when generating a range of plausible alternatives, counterfactual analyses may also resemble

SCENARIO COMPARISON, where multiple input variable configurations or decision paths that satisfy different outputs are

surfaced side by side without any user interaction or preference of a single optimization objective or constraint. For

instance, Gomez et al.[36] explore diverse paths that either lead to or avoid heart disease, enabling users to contrast across

different health trajectories.

Thus, while many works frame their contributions as “counterfactuals”, in practice they operationally map with

the GOAL SEEK what-if analysis type and also often extend to higher-level analyses like SCENARIO COMPARISON. By

deconstructing these analyses into PRAXA’s components, we can better capture their intent and type.

4.2 Extending What-If Analysis to Dimensionality Reduction and Parameter Space Exploration

Our review also revealed that the components and types of what-if analysis defined in PRAXA extend beyond traditional

decision-support tasks into more complex domains such as dimensionality reduction, simulation ensembles, and parameter

space exploration. These tasks often require reasoning across multiple levels of abstraction–e.g., between high- and

low-dimensional data spaces or across ensembles of parameter configurations–making them interesting to examine how

PRAXA clarifies overloaded terminology and unifies disparate analytic strategies.
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A compelling analysis terminology was the “inverse projection” technique adopted by Espadoto et al. [24], which uses

deep learning to map 2D projected points back into high-dimensional representations. Conceptually, this mirrors the GOAL

SEEK analysis type, but with inputs and outputs defined not as individual data features or instance-level values but as entire

data spaces. Within PRAXA, this translates to the optimize system operation to retrieve the high-dimensional data points

corresponding to the low-dimensional data points. Despite the change in granularity of the data space, the underlying

analytical goal of identifying input configurations that meet a specific output remains consistent with goal-seeking tasks.

Other dimensionality reduction works also align similarly align. For instance, Torsney et al. [86], Kumpf et al. [48],

and Molchanov et al. [62] all study interactive “parameter tuning” to steer outputs toward desired results. These can be

precisely described as GOAL SEEK analyses combining constrain and optimize operations.

Complementary to these GOAL SEEK or “backward mapping analyses” are “forward mapping” analyses, exemplified

in the work by Gortler et al. [37], who alter model parameters to explore the variability in low-dimensional projections

produced by PCA. This aligns with the MODEL PARAMETER SENSITIVITY analysis type within PRAXA, where users

perform controlled variations of input (e.g., projection parameters) to observe their impact on model outputs. Such

a pattern involves a perturb user operation and often pushes users to compare outcome differences across scenarios.

Splechtna et al. [81] extend this further by implementing both “forward” and “backward” mapping strategies across

multiple simulation ensembles. In “forward mapping”, they vary parameters to understand the shapes and boundaries of

resulting output regions, resembling SENSITIVITY analysis. In contrast, their “backward mapping” approach attempts to

find which combinations of control parameters lead to specific output patterns, aligning with GOAL SEEK.

The same broad what-if analysis types underlie within complex domains such as dimensionality reduction, ensemble

simulation, and parameter space exploration–where users reason across multiple levels of granularity and abstraction.

What may appear as distinct paradigms (e.g., inverse projection, parameter tuning, or forward vs. backward mapping)

can be clearly described using PRAXA’s components and types, revealing them as variations of SENSITIVITY or GOAL

SEEK. In this way, PRAXA not only disambiguates overloaded terms but also unifies seemingly unrelated analyses under

a common framework. More importantly, it highlights underexplored opportunities–such as very few mentioned and

applications of richer uses like COMPARE SCENARIOS and almost no discussions around chaining analyses (e.g., plugging

outputs of one analyses into another for continued analyses)–that could lead to novel future what-if analyses.

5 Limitations of the PRAXA Framework

While our framework provides a structured approach to understanding what-if analysis by defining its key components and

demonstrating how combining them leads to different types of analysis, it is important to acknowledge certain limitations.

First, our framework is derived from an extensive review of existing literature, aiming to consolidate a broad spectrum

of terminologies related to what-if analysis. However, we do not claim it to be exhaustive. As the field continues to

evolve–particularly with advances in generative AI, interactive LLM agents, and multimodal reasoning–new analytical

approaches may emerge that are not currently captured within our framework. Thus, it should be considered a dynamic

framework, open to refinement and expansion as future research progresses.

Second, while our literature review was extensive, our framework has not yet been formally applied in the development

of systems or tools designed to perform such analyses. Such applications would enhance the reproducibility and practical

validation of our framework. Future work could explore implementing our framework as a foundation for developing

what-if analysis features within systems and tools to assess its usability, completeness, and reproducibility.

Third, the boundaries between what-if types can be fuzzy and open to interpretation. For instance, SCENARIO

COMPARISON is a higher-level analysis that compares other analyses like SENSITIVITY or GOAL SEEK. Gomez et al. [36]
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developed a tool that explores all possible paths of demographic and health variables leading to heart disease, which fits

SCENARIO COMPARISON. Yet, when users filter results to focus on cases where “disease does not occur”, the analysis shifts

toward GOAL SEEK, as it applies constraints and optimization to find inputs achieving a target outcome. Likewise, if users

adjust a single variable (e.g., cholesterol levels) to see how predictions change, the task resembles SENSITIVITY. In this

way, SCENARIO COMPARISON can encompass multiple finer-grained analyses, and interpretation depends on the operations

performed and the user’s intent.

Further, the same high-level analysis goal can often be achieved through different sequences of user operations. For

instance, consider the goal of understanding how cholesterol levels affect heart disease risk. A user might (1) directly

vary cholesterol values across a range (perturb) to observe how predictions change, (2) run a GOAL SEEK analysis and

then filter the resulting scenarios to patients with cholesterol above 200 (scope), or (3) set cholesterol ‘ = 200’ as a hard

requirement before optimization begins (constrain), prompting the model to rerun under this restriction. Although the

end goal is the same, the operations differ in order and intent, suggesting different analysis types. While our framework

provides language to describe these alternatives, interpreting them still requires human judgment or system-level guidance.

6 Relation to Other Framework Papers

Several existing frameworks partially overlap with our work but differ in focus and scope. For example, La et al. [50]

survey visual analytics for explainable deep learning, recognizing perturbation and counterfactual techniques. We extend

beyond this by systematically identifying components of these what-if analysis techniques and generalizing across a

wider range of analysis types.

Von et al. [90] review visual analytics for optimizing structured pipelines (i.e., sequences of algorithmic operations

that transform input into output) through eight application case studies. In contrast, our framework is derived from 141

papers and emphasizes execution and implementation of what-if analyses by decomposing them into dataset, model,

and outputVariable components.

Further, Piccolotto et al. [69] review visual parameter space exploration, focusing on how model parameters relate to

outputs in spatial and temporal contexts. While overlapping in sensitivity and optimization, their framework emphasizes

high-level workflow actions (e.g., manual or automatic parameter setting). In contrast, our framework is domain-agnostic

and broader: we position parameter space analysis as as a what-if analysis-related analysis and instead break down

analysis into constituent components, enabling systematic characterization of different what-if types.

Sedlmair et al. [75] outline high-level data flows, navigation strategies, and six tasks in parameter space analysis.

However, their framework does not fully address the specifics of how these flows and strategies relate to different analysis

tasks. Our framework extends theirs by mapping these abstractions to specific what-if operations and types. For example,

optimization and model output fitting correspond to our GOAL SEEK type, while sensitivity aligns with our SENSITIVITY

type. Other tasks such as outliers and uncertainty are treated as motivations, and partitioning relates to our SCENARIO

COMPARISON. Thus, whereas Sedlmair et al. emphasize task-level navigation, we provide a finer-grained grammar that

explains how different components combine to support diverse what-if analyses.

In summary, existing frameworks typically address specific application domains or emphasize high-level abstractions,

whereas our framework provides a fine-grained, component-level view of what-if analysis that is both systematic and

extensible across domains.
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7 Challenges and Opportunities for What-if Analysis

In addition to identifying key components and categorizing distinct TYPES of what-if analysis from reviewing prior work,

we also distill recurring challenges discussed in the literature around conducting and interpreting such analyses. Here we

discuss them and identify open research opportunities.

Deciding which analysis to execute and explore. Before users begin performing what-if analysis, they face the critical

challenge of deciding what to explore. This requires a complex mix of analytical foresight, domain understanding, and

cognitive tracking–all of which can present substantial barriers.

Selecting an appropriate analysis configuration often required substantial domain knowledge to configure models,

choose appropriate input variables, and define meaningful constraints. Many systems expect users to make such decisions

and decide on what to explore on their own [5, 6], decisions that even experts make based on vague intuition [66]. Even

when users know what to analyze, the scale of possible scenarios presents another hurdle: as features and parameters

increase, the space of possible scenarios–especially in SENSITIVITY and GOAL SEEK analyses–grows exponentially [22,

49], making exhaustive exploration infeasible. Strategies like greedy search [57] still force trade-offs between depth and

breadth [47, 79], while new hypotheses and directions often emerge mid-analysis [51, 55], further expanding the search

space. Furthermore, users struggle to track evolving analyses, as iteratively adjusting variables and exploring alternatives

makes it difficult to follow which inputs led to which outputs, especially when comparing many scenarios via SCENARIO

COMPARISON[10]. Reliance on memory or mental models [21, 85] increases cognitive overload and reduces the ability to

extract actionable insights [2, 25].

Future Opportunities. Future systems could guide users in selecting and managing analyses through recommendation

features and intelligent assistance [51]. Provenance tracking, as explored in workflow management systems such as

VisTrails [29] and Kepler [59], could be adapted to what-if analysis to log user actions and hypotheses. Our PRAXA

framework provides a starting point by serving structured and formal specifications of each analysis (inputs, operations,

constraints, outputs) that can be used as metadata within such systems, enabling reproducibility and automated analysis

pipelines that reuse prior workflows.

Challenges related to implementation of what-if analysis. Even if users know what scenarios to explore, actually

performing and executing the what-if scenarios is often a manual and tedious process. It requires users to individually

iterate on adjusting selected variables and re-running each configuration one at a time. Many systems rely on trial-and-

error exploration with users manually manipulating input variables during SENSITIVITY analyses [34, 89] or re-running

optimizations repeatedly in GOAL SEEK analyses to satisfy new constraints [63]. Even when scenarios are compared

(SCENARIO COMPARISON) [5, 36, 98], outputs are static, leaving users to navigate and refine scenarios themselves. Setting

up such configurations are often evolving, which may lead to users struggling to observe consistency between data and

visualizations, since small changes can cascade unpredictably, disrupting other already explored scenarios [23, 111].

Further, many what-if systems are rigidly implemented, requiring tightly coupled models and variables, requiring

substantial re-engineering for small modifications [85]. Finally, what-if analysis workflows are fragmented across multiple

tools for modeling, visualization, and communication, increasing cognitive load [85] on users.

Future Opportunities. Formal intermediate representations of what-if analysis (e.g., JSON specifications, schemas, or

SQL-like languages), as supported by our PRAXA framework, could modularize implementation and enable reusable plug-

ins, making systems more flexible and easier to adapt. Such specifications would also help maintain consistency across

data, models, and visualizations, reducing errors and keeping outputs synchronized. Building on this foundation, workflow

management techniques could unify currently fragmented toolchains into cohesive systems that integrate modeling,
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scenario tracking, and visualization. Finally, mixed-initiative approaches that translate natural language interactions

(captured via LLMs) into PRAXA specifications could automate pipelines and bridge low-level implementation with

higher-level communication, reducing manual effort while supporting more adaptive and scalable workflows.

Trust and interpretability issues with what-if analysis. Another challenge highlighted in the literature in the adoption

of what-if analysis is the lack of users’ trust and confidence in the predictions and their ability to act on them. These

issues arise from interconnected issues. First, ground truth is often absent to validate hypothetical scenarios [7, 73], which

makes it difficult for users to assess the right model to use [22] or correct parameters to explore [85]. In high-stakes

domains like healthcare, this leads to unreliable outputs, like for instance, expert users conducting SENSITIVITY analysis

and novice users applying GOAL SEEK analysis may arrive at different conclusions due to confirmation bias or diagnostic

overreach [93]. Second, explanation techniques used alongside what-if analysis, such as LIME, SHAP, and DiCE, are

fragile and sensitive to hyperparameters, producing inconsistent outputs [51]. This is observed in SENSITIVITY analysis

where any instability in the explanation layer can distort users’ understanding of the model behavior. While not a flaw

of what-if analysis itself, brittle interpretable methods can still undermine the interpretive process [96]. Finally, results

often lack actionability. For instance, generated scenarios may ignore feasibility constraints [15], poorly communicate

uncertainty among predictions [17], and results may not align with user goals or expertise [13, 98]. Therefore, in practice,

users sometimes revert to simpler models for interpretability at the cost of analytical depth [49].

Future Opportunities. Addressing trust and interpretability requires progress on three fronts. First, methods for embedding

causal inference into what-if analysis [9, 93, 105] can help distinguish correlation from causation, making results more

replicable and reliable even in the absence of ground truth [95]. Second, explanation techniques need to become more

robust either by stabilizing interpretability methods or developing new methods that provide consistent, reproducible

explanations under varying parameter configurations. Third, systems should present results in ways that are both

transparent and actionable, like for example by incorporating uncertainty-aware visualizations (e.g., confidence intervals

in predictions and causal graphs) and by rendering decision trade-offs (via highlighting Pareto fronts, sensitivity summaries,

and diffs of what changed across scenarios). Allowing users to progressively disclose and explore explanations instead of

showing them scenarios or explanation information all at once, along with mixed-initiative guidance of natural language

can help calibrate their confidence and more usable in decision-making. In all of these potential opportunities, PRAXA

could play a central role if extended to explicitly capture an explanation layer (e.g., including causal assumptions, metadata

about explanation tools and their stability, and interface-level details for progressive disclosure), thereby providing a

structured foundation for building more trustworthy, transparent, and user-adaptive what-if analysis systems.

Challenges in visualizing and interacting with what-if analysis. Many what-if systems rely on static or limited

visualizations that restrict user engagement, with much prior work (25%) focusing only on displaying predictive outputs [6,

25, 42, 93]. Even interactive systems typically restrict input manipulation to simple elements like sliders [5, 79], text

fields [30, 101], or table edits [100, 105], offering little support for richer operations such as chaining analyses (e.g.,

feeding GOAL SEEK results into SENSITIVITY) or introducing custom constraints (e.g., limiting delivery time for frequent

customers while keeping increases in shipping cost and labor within acceptable bounds).

Visualizing the outputs (see supplementary materials 1) is equally challenging: high-dimensional data, multiple

scenarios, and interdependent variables often lead to dense, overwhelming visuals. Existing approaches struggle to

balance detail with usability, making it difficult to extract insights from the analyses. For example, SHAP-based sensitivity

plots may obscure actionable findings [72], dimensionality reduction can distort variable relationships [88], and even

simple bar charts for counterfactuals can introduce framing biases (i.e., overemphasizing certain outcomes) [44].
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Future Opportunities. Scalable and interpretable visualizations are needed to support richer what-if analysis. Promising

directions include advanced dimensionality reduction techniques [2, 14, 38] and surrogate models like LIME and SHAP

with visual indicators for fast, interpretable approximations [51]. Such indicators could take the form of uncertainty

overlaps (e.g., shaded overlays with blurred under-regions showing when different runs produce inconsistent outcomes)

or consensus highlighting to emphasize features or neighborhoods that remain stable across perturbations. With mixed-

initiative systems, such indicators can also be supported with textual overlays or uncertainty callouts [4, 36, 42] that

would further enhance the analysis. Further, hierarchical or multi-scale views [84] that allow users to move fluidly

between overview and details can be adopted for what-if analysis. Interaction design can also go beyond single sliders or

tables toward multi-scenario workspaces, where dynamic linking and filtering are used to compare, and chain analyses

side-by-side.

8 Conclusion

What-if analysis is a fundamental approach used across domains, yet its observed across works via different terminologies

and applied in inconsistent ways, limiting its systematic progress. Through a literature review of 141 publications, we

introduced PRAXA, a framework that clarifies the motivations, components and types of what-if analysis, and highlights

the challenges in its implementation and application. By standardizing the vocabulary and unifying a structure, PRAXA

provides a foundation for more consistent, transparent, and reusable analyses. It also opens opportunities for newer novel

what-if analyses techniques, visualizations, and generalizable tools and LLM-driven interfaces that make what-if analysis

more accessible, interpretable, and impactful across domains.
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